手机浏览器扫描二维码访问
对于一个包含至少2个集合的、对并运算封闭的有限集合族,至少存在一个元素,使得它在至少一半的集合里出现过。
我们来解读一下这个猜想说的啥。
首先集合,就是包含了一系列元素的合集,这里面的元素既可以是数字,也可以是变量等。
例如这是一个我们常见的数集,而且是有限的(只包括3个元素):{1,2,3}
至于无限数集,就像是自然数集、有理数集、整数集这种由无限个元素组成的集合。
当然,集合也有集合,它们组合起来,就可以被叫做集族,例如下图中F就是一个集族:
在这些集族中,有一类特殊的集族对并运算封闭。
对集族中的集合而言,并运算就是对两个集合求并集;至于并运算封闭,即是指在对任意两个集合进行并运算后,其结果仍然在这个集族中。
以下面这个集族为例:{1}{1,2}{1,2,3}{1,2,3,4}
无论是对{1}、{1,2}求并集,还是对{2,3,4}、{1}求并集,还是对{1,2}、{2,3,4}求并集……任意两个集合求并集,其结果都会在这个集族中。
所以,上面这个集族就符合并封闭集合这一要求,而并封闭猜想也正是基于此而提出。
值得注意的是,这一猜想中的“一半”是紧致的,毕竟对于任何一个集合的子集族,所有的元素恰好在一半的集合里出现过。
它于1979年被一个叫PéterFrankl的数学家提出,所以也一度被叫做Frankl猜想。
看起来似乎不难,然而到实际解决时,一众数学家才发现这并不简单。
达特茅斯学院数学教授PeterWinkler曾经在1987年就这个猜想给出尖锐的评价:
并封闭集合猜想确实很有名,除了它的起源和它的答案。
为了解决这个问题,数学家们也已经尝试过不少方法。
例如有人试着给猜想加上一些限制条件,让它在这些情况下成立。
像是将它和图论中的二分图(BipartiteGraph)联系起来,证明具备其中某种性质的集族,在这个猜想的条件下成立。
又或是给其中的元素加以限制,再加以证明……
BUT,无论是哪种方法,距离真正需要证明的猜想都还差不少距离。
来自哥伦比亚大学的助理教授WillSawin对此评价称:
它看起来似乎是个不难解决的东西,毕竟长得和那种“容易解决的问题”很像。
然而,如今却没有任何一个证明能真正搞定它。
问题就这样进度缓慢,直到2022年秋天,谷歌研究员JustinGilmer借着朋友结婚的契机,回到了罗格斯大学校园。
Gilmer回母校的时间是2022年10月,此时距他毕业离开数学学术圈,已过去7年。这些年来,他自觉无心专注纯数学领域,转而自学编程,投身了IT行业。
我一枪一剑杀穿大陆 穿到八零,我自带锦鲤系统! 我的徒弟不对劲 宗门全是美强惨,小师妹是真疯批 哦豁!虐文炮灰不干了! 在下潘凤,字无双 暗无 译文欣赏:博伽瓦谭 至尊战皇 摊牌了,我爹是绝顶高手! 混迹娱乐圈的日子 农夫是概念神?三叶草了解一下! 重生在宝可梦,我的后台超硬 快穿之炮灰得偿所愿 玄灵界都知道我柔弱可怜但能打 新人驾到 永恒大陆之命运 国运:拥有多重身份的我很合理吧 穿成商户女摆烂,竟然还要逃难! 大明:开局气疯朱元璋,死不登基
穿越成为火影中的奈良鹿丸!因穿越加上‘星’的能力,精神力强大到惊粟!觉醒血继限界‘影瞳’!ltBRgt先是小小的复制一套影忍法!再觉醒万花筒,剥夺影子!强者尾兽的影子一个也不放过,佐助更是憋屈的挂掉!大小美女更是一个也不放过…...
现代第一特工穿越倚天神雕天龙,坐拥花丛的传奇故事!宁可错杀三千也不放过一个!‘穿越’,你绝对没听错。倚天神雕,美女无数,一个个冰清玉洁的清纯玉女,如何‘穿越’,还等什么?赶快点击吧!...
一觉醒来发现身边多了个没穿衣服的美女,这个美女竟然是金庸笔下的黄蓉。而且还是少女时期的黄蓉。莫名其妙的得到了黄蓉的身心,有些木讷的小人物顿时发生了变化。挨欺负了不用咱出手,有黄MM的打狗棒法帮咱出气。想成为武林高手?没问题。桃花岛武功随便学,打狗棒法随意耍,九阴真经纵横大都市总之有了黄蓉这个伪师父,真老婆之后,一切都变的精彩了!...
一代魔君,逆天重生!为复血海深仇,重回都市,掀起血雨腥风!当其锋芒展露的刹那,美女院长,萌呆萝莉,清纯校花,冷艳总裁纷至沓来!...
小医生蒋飞,正因为诊所生意太差而考虑关门大吉时,却意外被游戏人物附身,从此变得无所不能。不仅医术出神入化,生死人肉白骨,从阎王爷手中抢命就连厨艺琴艺园艺宠物驯养都全部精通!当别人以为这就是蒋飞全部本事时,蒋飞却笑眯眯地将目光看向了那一本本武学秘籍降龙十八掌六脉神剑北冥神功独孤九剑...
什么?要我和美女总裁搞好关系?当然可以!李迪贱笑一声关系就是搞出来的嘛!当兵王之王重回花都,冷艳总裁,傲娇萝莉,清纯助理,火辣警花,群美环绕!花都,我为王!...