手机浏览器扫描二维码访问
1755年,瑞士数学家L.欧拉在写一本叫《流体运动的一般原理》的书。
其中在研究无粘性流体动力学时,发现了一种运动的微分方程。
这个微分方程是指对无粘性流体微团应用牛顿第二定律得到的运动微分方程。
欧拉敏锐的发现,这个方程还可以去解释热的传导、圆膜的振动、电磁波的传播等问题。
长得是这样的,ax2D2y+bxDy+cy=f(x),类似二次方程。
其中a、b、c是常数,这是一个二阶变系数线性微分方程。它的系数具有一定的规律:二阶导数D2y的系数是二次函数ax2,一阶导数Dy的系数是一次函数bx,y的系数是常数。
而且,欧拉不止步于此,还继续发现了高次导数的推广的形式。
同时欧拉使用带自然对数底的带还,再用D表示微分符号,再用归纳法,转化出常微分方程。
得出的方程可以求出2次甚至高次的常微分方程通解。
在物理学上,欧拉方程统治刚体的转动,可以选取相对于惯量的主轴坐标为体坐标轴系,这使得计算得以简化,因为我们如今可以将角动量的变化分成分别描述的大小变化和方向变化的部分,并进一步将惯量对角化。
方程组各方程分别代表质量守恒(连续性)、动量守恒及能量守恒,对应零粘性及无热传导项的纳维-斯托克斯方程。
历史上,只有连续性及动量方程是由欧拉所推导的。然而,流体动力学的文献常把全组方程——包括能量方程——称为“欧拉方程”。跟纳维-斯托克斯方程一样,欧拉方程一般有两种写法:“守恒形式”及“非守恒形式”。守恒形式强调物理解释,即方程是通过一空间中某固定体积的守恒定律;而非守恒形式则强调该体积跟流体运动时的变化状态。
欧拉方程可被用于可压缩性流体,同时也可被用于非压缩性流体——这时应使用适当的状态方程,或假设流速的散度为零。
f(x)=x^n*y^(n)+p1*x^(n-1)*y^(n-1)+……+pn-1*x*y+pn*y
其中做变换x=e^t或t=lnx,将自变量x换成t。
可得到dydx,很对对应的对y求x高阶导数的各个公式。
用符号D表示对t求导的运算ddt。
可得xy,x^2y,以至得到x^n*y^(n)表示出的关于D的式子。
然后带入方程,再把t换成lnx,得到原方程的解法。
可以轻松求解一个在弹性力学中常见的四阶变系数线性微分方程。
喜欢数学心请大家收藏:()数学心
我的徒弟不对劲 农夫是概念神?三叶草了解一下! 国运:拥有多重身份的我很合理吧 至尊战皇 穿成商户女摆烂,竟然还要逃难! 快穿之炮灰得偿所愿 混迹娱乐圈的日子 摊牌了,我爹是绝顶高手! 永恒大陆之命运 我一枪一剑杀穿大陆 译文欣赏:博伽瓦谭 暗无 大明:开局气疯朱元璋,死不登基 哦豁!虐文炮灰不干了! 在下潘凤,字无双 玄灵界都知道我柔弱可怜但能打 穿到八零,我自带锦鲤系统! 宗门全是美强惨,小师妹是真疯批 新人驾到 重生在宝可梦,我的后台超硬
穿越成为火影中的奈良鹿丸!因穿越加上‘星’的能力,精神力强大到惊粟!觉醒血继限界‘影瞳’!ltBRgt先是小小的复制一套影忍法!再觉醒万花筒,剥夺影子!强者尾兽的影子一个也不放过,佐助更是憋屈的挂掉!大小美女更是一个也不放过…...
现代第一特工穿越倚天神雕天龙,坐拥花丛的传奇故事!宁可错杀三千也不放过一个!‘穿越’,你绝对没听错。倚天神雕,美女无数,一个个冰清玉洁的清纯玉女,如何‘穿越’,还等什么?赶快点击吧!...
一觉醒来发现身边多了个没穿衣服的美女,这个美女竟然是金庸笔下的黄蓉。而且还是少女时期的黄蓉。莫名其妙的得到了黄蓉的身心,有些木讷的小人物顿时发生了变化。挨欺负了不用咱出手,有黄MM的打狗棒法帮咱出气。想成为武林高手?没问题。桃花岛武功随便学,打狗棒法随意耍,九阴真经纵横大都市总之有了黄蓉这个伪师父,真老婆之后,一切都变的精彩了!...
一代魔君,逆天重生!为复血海深仇,重回都市,掀起血雨腥风!当其锋芒展露的刹那,美女院长,萌呆萝莉,清纯校花,冷艳总裁纷至沓来!...
小医生蒋飞,正因为诊所生意太差而考虑关门大吉时,却意外被游戏人物附身,从此变得无所不能。不仅医术出神入化,生死人肉白骨,从阎王爷手中抢命就连厨艺琴艺园艺宠物驯养都全部精通!当别人以为这就是蒋飞全部本事时,蒋飞却笑眯眯地将目光看向了那一本本武学秘籍降龙十八掌六脉神剑北冥神功独孤九剑...
什么?要我和美女总裁搞好关系?当然可以!李迪贱笑一声关系就是搞出来的嘛!当兵王之王重回花都,冷艳总裁,傲娇萝莉,清纯助理,火辣警花,群美环绕!花都,我为王!...