故事会网

手机浏览器扫描二维码访问

第一百六十八章 勒让德函数的多项式微积分(第1页)

勒让德教授贝塞尔二阶微分方程相关知识。

贝塞尔说:“你这个多项式是从哪里来的?”

勒让德说:“从勒让德方程推导出来的。”

贝塞尔说:“勒让德方程是从哪里来的?”

勒让德说:“从连带勒让德方程得到的,这个方程在m值为0,也就是在轴对称情况下得到的。在球函数方程分离变量时,可出现连带勒让德方程。”

贝塞尔说:“连带勒让德方程又是什么东西?”

勒让德说:“连带勒让德方程是一个二阶常微分方程。”

贝塞尔说:“二阶常微分方程是这个样子吗?”

贝塞尔说着,写出了方程:y+py+qy=0。

勒让德说:“这是齐次的的二阶常系数线性微分方程。”

勒让德写了方程y+py+qy=f(x),这个是二阶常系数线性微分方程,对贝塞尔说:“还必须是其中y1和y2的比值为常数才可以,如果不是常数,就是非齐次的。”

贝塞尔说:“你是研究这些方程解法的吧?一般有哪些方法?”

勒让德说:“有待定系数法、多项式法、常数变易法和微分算子法等。”

贝塞尔说:“二阶常系数线性微分方程如何解呢?”

勒让德说:“先写出特征方程。”

勒让德写出了y+py+qy=0的特征方程r^2+pr+q=0。

然后写出特征方程的解后,然后写出三种条件下的通解:

1.两个不相等的实根:y=C1e^(r1x)+C2e^(r2x)

2.两根相等的实根:y=(C1+C2x)e^(r1x)

3.一对共轭复根:r1=α+iβ,r2=α-iβ:y=e^(αx)*(C1cosβx+C2sinβx)

贝塞尔说:“那如何得到非齐次的解?”

勒让德说:“通解等于非齐次方程特解加齐次方程通解。”

贝塞尔说:“这个有什么用吗?”

勒让德说:“在工程技术及力学和物理学中都有十分广泛的应用。”

喜欢数学心请大家收藏:()数学心

永恒大陆之命运  新人驾到  至尊战皇  穿成商户女摆烂,竟然还要逃难!  玄灵界都知道我柔弱可怜但能打  混迹娱乐圈的日子  穿到八零,我自带锦鲤系统!  我一枪一剑杀穿大陆  暗无  宗门全是美强惨,小师妹是真疯批  摊牌了,我爹是绝顶高手!  重生在宝可梦,我的后台超硬  快穿之炮灰得偿所愿  农夫是概念神?三叶草了解一下!  我的徒弟不对劲  哦豁!虐文炮灰不干了!  译文欣赏:博伽瓦谭  大明:开局气疯朱元璋,死不登基  在下潘凤,字无双  国运:拥有多重身份的我很合理吧  

热门小说推荐
火影之奈良鹿丸

火影之奈良鹿丸

穿越成为火影中的奈良鹿丸!因穿越加上‘星’的能力,精神力强大到惊粟!觉醒血继限界‘影瞳’!ltBRgt先是小小的复制一套影忍法!再觉醒万花筒,剥夺影子!强者尾兽的影子一个也不放过,佐助更是憋屈的挂掉!大小美女更是一个也不放过…...

倚天神雕(销魂倚天神雕)

倚天神雕(销魂倚天神雕)

现代第一特工穿越倚天神雕天龙,坐拥花丛的传奇故事!宁可错杀三千也不放过一个!‘穿越’,你绝对没听错。倚天神雕,美女无数,一个个冰清玉洁的清纯玉女,如何‘穿越’,还等什么?赶快点击吧!...

我的师父是黄蓉破天居士

我的师父是黄蓉破天居士

一觉醒来发现身边多了个没穿衣服的美女,这个美女竟然是金庸笔下的黄蓉。而且还是少女时期的黄蓉。莫名其妙的得到了黄蓉的身心,有些木讷的小人物顿时发生了变化。挨欺负了不用咱出手,有黄MM的打狗棒法帮咱出气。想成为武林高手?没问题。桃花岛武功随便学,打狗棒法随意耍,九阴真经纵横大都市总之有了黄蓉这个伪师父,真老婆之后,一切都变的精彩了!...

医流武神

医流武神

一代魔君,逆天重生!为复血海深仇,重回都市,掀起血雨腥风!当其锋芒展露的刹那,美女院长,萌呆萝莉,清纯校花,冷艳总裁纷至沓来!...

全能武侠系统

全能武侠系统

小医生蒋飞,正因为诊所生意太差而考虑关门大吉时,却意外被游戏人物附身,从此变得无所不能。不仅医术出神入化,生死人肉白骨,从阎王爷手中抢命就连厨艺琴艺园艺宠物驯养都全部精通!当别人以为这就是蒋飞全部本事时,蒋飞却笑眯眯地将目光看向了那一本本武学秘籍降龙十八掌六脉神剑北冥神功独孤九剑...

恋上美女总裁

恋上美女总裁

什么?要我和美女总裁搞好关系?当然可以!李迪贱笑一声关系就是搞出来的嘛!当兵王之王重回花都,冷艳总裁,傲娇萝莉,清纯助理,火辣警花,群美环绕!花都,我为王!...

每日热搜小说推荐