故事会网

手机浏览器扫描二维码访问

第三百三十八章 庞加莱同调论拓扑学(第1页)

1880年,庞加莱(Poincaré)发表了关于自守函数的重要结果。

1883年,庞加莱发表了一篇论文,开启了多复变解析函数理论的研究。

1892年,庞加莱出版了三卷本《天体力学的新方法》(LesMéthodesnouvellesdelamécaniquecéleste)的第一卷。他旨在完全刻画机械系统的所有运动,援引流体流动的类比。他还证明,以前例如德劳内(Delaunay)用于研究三体问题的级数展开是收敛的,但一般不是一致收敛。这使人怀疑拉格朗日和拉普拉斯给出的关于太阳系稳定性的证明。

1894年,庞加莱开始了代数拓扑的工作。

1895年,庞加莱出版了《位置分析》(Analysissitus),这是他的第一本拓扑学着作,给出了这个专题的较早的系统性处理。他是代数拓扑的创始人,发表了这个专题的6篇论文。他引入了基本群。

1904年,庞加莱提出庞加莱猜想:每个同伦等价于3维球面的3维闭流形必定是3维球面。

1904年,庞加莱在一个讲座中提出一种相对性理论来解释迈克尔逊-莫雷实验。

1908年,庞加莱出版了《科学与方法》(Scienceetméthode),这也许是他最着名的大众读物。

“大家要考虑这个问题,这个猜想所延伸的问题。”

教课是查尔斯·厄米特,他一边在黑白上写着复杂而古怪的符号,一边在画各种表示抽象思想的图。此时,他想把世界性的难题就这样任性的抛给自己的学生。

突然看到一个学生回答道:“使用怎样的简单几何,和构造方法,做成一个特定序列,然后构造出我们想要的复杂的几何体?我觉得不是什么难事呀!”

查尔斯·厄米特看了看亨利·庞加莱,听到这句话就想笑。虽然他是要把这种难题要扔给学生们去解决的,但是如此不走心的回答,还是让查尔斯·厄米特有些反感。

“别着急去这样说,你给我说说,有什么办法?”

亨利·庞加莱想了想说:“一个复杂的曲面形状,是可以由无数个等边三角形构造出来的。”

查尔斯·厄米特噗嗤的笑了一声:“你是刚学的吧,不对,你看到一个复杂的曲面,一下子就能知道如何用无数个等边三角形来构造?你幼稚了!首先这无数个等边三角形都是大小相等的吗?如果不相等,那应该如何去选取大小?”

“先用最大的覆盖一下,看看,在小的地方再用次等大的用最大的覆盖,每一个空隙使用尽可能最大的三角形去覆盖,盖到最小的为止。”亨利·庞加莱说着话,带有要豁出去的意思了。

“哈哈,什么叫盖到最小?有多小?是不是在误差范围之内的不用管就可以了?”查尔斯·厄米特随着亨利·庞加莱的意思,也在试图推导,而不急于去反驳他的观点。对于查尔斯·厄米特来说,解决问题,有的时候比提出问题更值得去珍惜,老师的批判应该有水平,而不去做一个情绪化的大杠精。

“没做,做某一个项目的时候,这种误差小的,根本不影响工程,而且这样去做出无数的三角形的办法,完全说可取的。”亨利·庞加莱认为自己想的很完美,只要是认真思考过的问题,就没有解决不了的办法。

“我发现两个问题,第一就是去根据形状去计算覆盖三角形的最大形状,这也不是一下子就能够算出来的。第二就是随着空隙的增加,去用三角形填空的过程也会变得极为繁琐复杂。”查尔斯·厄米特想要反驳的方式去测测亨利·庞加莱的能力,最重要的是要测一测亨利·庞加莱的耐力。

“如果不能够快速给出形状,就用随机的办法来化最大三角形,就没必要遍历的去比较哪个三角形面积是最大的了。而填空这种过程,就使用软件的算法,能不能用分布式的解决来计算了。”亨利·庞加莱认为这种办法也是可取的,没必要非得去找最大三角形,只要随机快速的找到足够大就可以,这样的计算过程就会加快,而且这样的下面的计算过程也会因此而加快。

查尔斯·厄米特心里在想,那这种构造的序列就是,先知道这个曲面,然后随机画上三角形填满,并记录三角形信息,之后随机的没填一个三角形,就记录一个三角形的信息,知道剩下的空隙在误差范围内就可以。

“即使用了这个办法,寻找空隙的算法,还是会很麻烦的。因为你不知道这里是不是覆盖过的。”查尔斯·厄米特还是疑惑的说。

“那就把每一个覆盖进行记录,然后遇到空隙后,计算空隙的中心坐标,中心坐标在覆盖好的三角形之外,就足够了。”亨利·庞加莱继续说:“你在序列里直接加上这个程序就可以了。”

“你说的随机给形状,还有判定空隙没有被三角形覆盖等等,这就是查尔斯·厄米特猜想里的模糊问题了。空隙没有被三角形覆盖,你的算法可能是错误的,万一有空隙很小,但质心在覆盖三角形中心处的凹形结构。即使你有其他算法了,但是也是很复杂的了。”查尔斯·厄米特就用这样的方式告诉大家,查尔斯·厄米特猜想的困难性。

亨利·庞加莱瞬间来了兴趣,他认为自己应该用基本的几何体去勾结一个复杂的三维形状。

亨利·庞加莱的脑子里开始用正四面体结构来堆放处一个形状的东西,并且试图让这个东西进行一个变换。

0维单形是一个点,一维单形是一条线段,二维单形是一个三角形,三维单形是一个四面体,n维单形是一个具有n+1个顶点的广义四面体。

喜欢数学心请大家收藏:()数学心

快穿之炮灰得偿所愿  哦豁!虐文炮灰不干了!  摊牌了,我爹是绝顶高手!  译文欣赏:博伽瓦谭  国运:拥有多重身份的我很合理吧  我一枪一剑杀穿大陆  混迹娱乐圈的日子  至尊战皇  宗门全是美强惨,小师妹是真疯批  新人驾到  农夫是概念神?三叶草了解一下!  重生在宝可梦,我的后台超硬  大明:开局气疯朱元璋,死不登基  暗无  永恒大陆之命运  穿到八零,我自带锦鲤系统!  玄灵界都知道我柔弱可怜但能打  我的徒弟不对劲  穿成商户女摆烂,竟然还要逃难!  在下潘凤,字无双  

热门小说推荐
大小姐的近身狂医

大小姐的近身狂医

左手生,右手死,他是阎罗在世!美人在怀,佳人在抱,他是情圣重生!一个初入都市的江湖少年,凭借逆天医术,从此纵横都市,逍遥花丛!...

异界召唤之千古群雄

异界召唤之千古群雄

这里有西楚霸王‘项羽’。这里有绝代杀神‘白起’。这里有千古奇人‘鬼谷子’。这里有西府赵王‘李元霸’。这里有盖世猛将‘吕布’。这是一个开挂的故事,生死看淡,不服就干!人呢?快进来扶扶朕(疯狂暗示加入书架),朕要拿传国玉玺,给读者老爷们砸核桃!什么?不吃核桃?没关系,拿朕的金箍棒来。给读者老爷们先剔剔牙,再随朕前往...

超强神龙进化系统

超强神龙进化系统

从小在孤儿院长大的敖问,一次意外死亡,重生为蛇,但是上天赐予他神龙进化系统这系统可以穿越万界,可以帮助他蜕蛇成龙!从此敖问为了不想平凡过完一生,开始了轰轰烈烈的进化之路。敖问可以跟人类结婚生子吗?系统你自己试试看,不就知道了吗?黑暗流无敌流装逼流微度PS胆小慈悲心勿进。...

种田山里汉:神医美娇娘

种田山里汉:神医美娇娘

已完结,新书求支持!小神医魂穿女尊王朝,原主臭名昭著,残暴不仁,身后留下一堆烂摊子。家徒四壁,茅屋漏雨,粮缸又已见了底。面对美貌的夫君,又瞅瞅丑不拉叽的自己,她狂奔在一条通往钢牙小白兔的康庄大道上!敢觊觎她夫君?揍,没有拳头解决不了的事情!如果有,那就接着揍!穷?医术,香粉,布艺,美食,酒庄,生意做起来,铺子开...

村野小邪医

村野小邪医

段飞是个倒霉的孩子,老爹被人陷害入狱,又遭遇对象退婚,开间小诊所给村里的人治病,连温饱都不行。可他从未放弃过努力,他坚信只要人不死,必定有站在人生巅峰的那天,最后他用枚小小的银针走上复仇之路,凭精湛的针灸获得无数美女青睐陪伴。这是个励志故事,段飞的崛起之路经受无数阴谋陷害,可他为了坚守正义毫不畏惧,视死如归跟邪恶力量做斗争。...

体坛之篮球教父

体坛之篮球教父

穿越2006,喜获神级教练系统。帮助姚麦夺冠,圆无数中国球迷心中的冠军梦。当雷霆四少留守俄城,一个崭新的支平民球队,又如何把不可一世的勇士王朝掀翻下马。一次穿越,一段关于有完本作品重生之安东尼篮神体坛之召唤猛将,人品有保证,放心收藏阅读。阅群539855046,进群需晒学徒以上粉丝值。...

每日热搜小说推荐