故事会网

手机浏览器扫描二维码访问

第五百九十七章 扎里斯基拓扑概型(第1页)

扎里斯基早年在基辅大学学习时,对代数和数论很感兴趣,在意大利深造期间,他深受三位意大利卡斯泰尔诺沃、恩里克斯、塞维里在古典代数几何领域的深刻影响。

意大利几何学者们的研究方法本质上很富有“综合性”,他们几乎只是根据几何直观和论据,因而他们的证明中往往缺少数学上的严密性。

扎里斯基的研究明显带有代数的倾向,他的博士论文就与纯代数数学有着密切联系,精确地说是与伽罗瓦理论密切联系。

当然也就激发了他在研究方程的时候,也会用到环论这样的思想。

取得博士学位後,他在罗马的研究工作仍然主要是与伽罗瓦理论有密切联系的代数几何问题。

一九三七年扎里斯基的研究发生了重要的变化,其特点是变得更代数化了。

他所使用的研究方法和他所研究的问题都更具有代数的味道〔这些问题当然仍带有代数几何的根源和背景〕。

扎里斯基对意大利几何学者的证明感到不满意,他确信几何学的全部结构可以用纯代数的方法加以重新建立。

在一九三五年左右,现代化数学已经兴盛起来,最典型的例子是诺德与范德瓦尔登有关论着的发表。

范德瓦尔登从这个观点出发把代数几何抽象化,但是只取得了一部分成就,而扎里斯基却获得了巨大成功。

扎里斯基开始研究如果方程在坐标系里有一种图形,能不能从方程中翻译出拓扑学的一些性质呢?

对于这个方程来说,也有一种拓扑学的那种洞。

而这个洞,必须是一种无穷大那样的奇点。

最简单的奇点是通常二重点,还有尖点,迷向点,ADE奇点(确切地说这是曲面奇点,但是它可以对应成曲线奇点)

他的博士论文主要是把所有形如f(x)-tg(x)=0的方程分类,这里面f和g是多项式,x可以解为线性参数t的根式表达式。扎里斯基说明这种方程可分为五类,它们是三角或椭圆方程。

ADE奇点就是代数曲面上的有理二重点,它可以通过奇点解消的方式爆发成为ADE曲线。

ADE奇点有五种类型:

A_n型:对应方程z^2=x^2+y^n

D_n型:对应方程z^2=y(x^2+y^)(n≥4)

E_6型:对应方程z^2=x^3+y^4

E_7型:对应方程z^2=x(x^2+y^3)

E_8型:对应方程z^2=x^3+y^5

任何ADE奇点都是超曲面奇点,也是循环商奇点。它们的有理典范除子是零,重数是2。

除此以外有无穷大点,不连续的拐折点。

为了严格下定义,扎里斯基认为方程等于0,x一阶导等于0,y一阶导为0,就可以称之为奇点了。

如果f(x,y)的泰勒展开中不包含一次项的话,否则就称该点是光滑点。

换句话说,我们幂级数展开f(x,y)=ax+by+cx^2+dxy+ey^2+高次项,如果a和b不全为零,那么该原点就称为C的光滑点,否则就称为奇点。

一个带有奇点的平面曲线C必定是某个射影空间中的光滑曲线C到射影平面的投影。找出这样的光滑曲线C的过程,称为C的奇点解消或者正规化。

曲线奇点有很一些有趣的不变量来刻画,比如它的重数(就是泰勒展开式中最低项的次数),局部分支数,几何亏格,Milnor数等等。

这些不变量之间有着一定的联系,对它们的研究属于奇点拓扑这一分支。

扎里斯基对莱夫谢茨说:“我听了你的代数几何的拓扑问题后,想到让方程的拓扑学体现出来,就可以从代数簇中直接进行。代数簇的思想,不就是所有的方程本来都是多项式,而多项式仅仅有加法和乘法。就相当于是代数簇在做很多加和乘的运算来组成各种曲线,那么就是环的作用而形成曲线。代数几何的问题也就是交换环的理想的问题。”

莱夫谢茨说:“那你要是研究方程的拓扑性质,就从环这个结构开始就行了。”

扎里斯基知道这些方程不需要在坐标系里定位,所以用了仿射空间,或者叫线性空间,只需要表示他们的形状就行。

仿射空间,又称线性流形,是数学中的几何结构。这种结构是一种特殊的线性空间,是欧式空间的仿射特性的推广。在仿射空间中,点与点之间做差可以得到向量,点与向量做加法将得到另一个点,但是点与点之间不可以做加法。

然后扎里斯基的工作就是把这些方程变成拓扑结构了。

在一九二七至一九三七年间,扎里斯基给出了关于曲线C的经典的黎曼-罗赫定理的拓扑证明,在这个证明中他引进了曲线C的n重对称积C(n)来研究C上度数为n的除子的线性系统。

快穿之炮灰得偿所愿  国运:拥有多重身份的我很合理吧  穿成商户女摆烂,竟然还要逃难!  在下潘凤,字无双  摊牌了,我爹是绝顶高手!  农夫是概念神?三叶草了解一下!  穿到八零,我自带锦鲤系统!  哦豁!虐文炮灰不干了!  永恒大陆之命运  玄灵界都知道我柔弱可怜但能打  暗无  重生在宝可梦,我的后台超硬  我一枪一剑杀穿大陆  我的徒弟不对劲  译文欣赏:博伽瓦谭  宗门全是美强惨,小师妹是真疯批  混迹娱乐圈的日子  至尊战皇  新人驾到  大明:开局气疯朱元璋,死不登基  

热门小说推荐
我不想逆天啊

我不想逆天啊

我林凡成为富家子弟,必须得享受。修炼?不现实的事情。最多加加点。阅读此书可能带来不适,此书已经注满正能量。全订验证群532355835逆天书普通群534442331...

重生九二之商业大亨

重生九二之商业大亨

新码的西南崛起已经上传,欢迎各位亲移驾亲临。这是一个令人发指的故事,这是一个令人发指的人。不说他其它的成就,大学刚毕业,他在纳斯达克,就已经有了两家上市公司,不对,他最近又收购了一家上市公司,哦,还在计划收购另一家。身后,还有一大堆投行追赶着,你的这家网站,什么时候上市?广大投资者也说,这样的网站,一定要接受公...

天才狂少

天才狂少

一个本来庸才的学生,在一次奇遇后,居然成为傲世天才,他发现自己的身世居然是而后面还有天大的阴谋...

体坛之篮球教父

体坛之篮球教父

穿越2006,喜获神级教练系统。帮助姚麦夺冠,圆无数中国球迷心中的冠军梦。当雷霆四少留守俄城,一个崭新的支平民球队,又如何把不可一世的勇士王朝掀翻下马。一次穿越,一段关于有完本作品重生之安东尼篮神体坛之召唤猛将,人品有保证,放心收藏阅读。阅群539855046,进群需晒学徒以上粉丝值。...

上门狂婿

上门狂婿

被丈母娘为难,被女神老婆嫌弃!都说我是一无是处的上门女婿!突然,家族电话通知我继承亿万家财,其实我是一个级富二代...

天命修罗

天命修罗

人无耻则无畏,人至贱则无敌!谁说盖世枭雄必需得霸气十足?谁说无耻贱圣踏不得七彩祥云?谁说此般少年不能争天命,演修罗,替天行道?(QQ书友群313310371)...

每日热搜小说推荐