故事会网

手机浏览器扫描二维码访问

第六百一十七章 陈景润1+1=2数论(第1页)

陈氏定理(1966)每一个充分大的偶数都是一个素数及一个不超过两个素数的乘积之和。简记为(1,2)。

诚如哈贝斯坦(H.Halberstam)与黎切尔特(H.E.Richert)所称,陈氏定理为“惊人的定理”,而且“从筛法的任何方面来说,它都是光辉的顶点”。

陈氏定理与筛法相关,筛法导源于公元前250年的“埃拉朵斯染尼氏(Eratosthenes)筛法”,1919年,布伦(V.Brun)对这一方法作出了重大改进,并将它用于哥德巴赫猜想。1947年,赛尔贝格(A.Selberg)给出了埃拉朵斯染尼氏筛法的另一个重大改进。

哥德巴赫猜想是1742年哥德巴赫与欧拉(L.Euler)的通信中提出来的,可以表述为:每一个不小于4的偶数都是两个素数之和。简记为(1,1)。

1900年,在希尔伯特的着名演讲中,又将这一猜想列入他的23个数学问题中的第八问题。布伦首先证明了:每个充分大的偶数都是两个素因子个数均不超过9的整数之和,简记为(9,9),余类推,(1,1)即表示哥德巴赫猜想对充分大的偶数成立。布伦的方法与他的结果先后被拉代马海尔(H.Rademacher),艾斯特曼(T.Estermann),黎奇(G.Ricci),布赫斯塔布(A.A.Buchstab)与孔恩(P.Kuhn)所改进。

将布伦、布赫斯塔布与赛尔贝格方法相结合,王元改进了布赫斯塔布的结果,他证明了(3,4)(王元,1956)。

再与孔恩方法相结合,他又得到了当时的最佳结果(2,3)(王元,1957)。

处理哥德巴赫猜想的另一途径是,将布伦筛法与林尼(Yu.V.Linnik)的大筛法相结合。首先是雷尼(A.Renyi)于1947年证明了,存在常数c使(l,c)成立,潘承洞与巴尔巴恩(M.B.Barban)独立地确定了c之值,潘承洞的结果如下:(1,5)(潘承洞,1962),(1,4)(潘承洞,1963)。

这是当时的最佳结果,由于邦比里(E.Bombieri)与阿?维诺格拉朵夫(A.I.Vinogradov)对大筛法及算术级数素数分布的均值定理的重大贡献,他们于1965年证明了(1,3),在上述成就的基础上,加上天才的创造,陈景润于1966年证明了(1,2),陈景润的方法在国外称为“转换原理”。

有人问陈景润:“你研究这个1加1等于2,有什么用?”

陈景润慌忙:“貌似没有实际作用,我以后会抓紧时间好好研究有用的东西。”

那个人问:“当真仅仅是为了玩,没有一丁点的用,也就是说数学中也有完全没用的东西?”

陈景润说:“其实我个人以为,如果要是把这样的思维给推广了就可以了,就是加和乘,是一个意思。毕竟任何数字都可以表示成是素数的乘积,那么任何数字都可以表示成是素数的相加,就能找到乘法和加法的关联性。”

那个人说:“那找到乘法和加法的关联性,就算是证明了加法和乘法是一回事,那能做什么?可以让乘法计算器变得跟加法一样简单?”

陈景润说:“在计算上已经有了对数尺,也不知道会不会有其他类型的关联了。但是如果环论是一个加和乘法组成的东西,那必然环论就只剩下一种运算了,那就跟群一样的,如果从一种宏观的构架来看,这算是数学家很了不得的大事。”

那个人说:“环论和群论成为一会儿事,那就不需要环了,环也能用群来表示,这又意味着什么?”

陈景润说:“很简单了,又任何类型的运算方式,都会往群这个方向上转化。多项式就会只剩下一种运算,而多项式这样的代数一阶逻辑谓词这样的表达,将会更加简洁,一阶逻辑谓词只有一种运算,就是或或者且的运算,只用其中一种即可。”

那个人说:“即使你说的很对,但是如果这样下去,就会造成你只有一种运算,但是表达另外一种运算就会显的很繁琐了。”

陈景润说:“是的,让一台电脑只有一个且运算,不见得这个电脑的计算量会减轻,所以在这方面可能没有太大的作用了。”

喜欢数学心请大家收藏:()数学心

在下潘凤,字无双  重生在宝可梦,我的后台超硬  暗无  哦豁!虐文炮灰不干了!  我一枪一剑杀穿大陆  宗门全是美强惨,小师妹是真疯批  玄灵界都知道我柔弱可怜但能打  穿到八零,我自带锦鲤系统!  我的徒弟不对劲  新人驾到  穿成商户女摆烂,竟然还要逃难!  农夫是概念神?三叶草了解一下!  大明:开局气疯朱元璋,死不登基  译文欣赏:博伽瓦谭  国运:拥有多重身份的我很合理吧  快穿之炮灰得偿所愿  至尊战皇  永恒大陆之命运  混迹娱乐圈的日子  摊牌了,我爹是绝顶高手!  

热门小说推荐
我不想逆天啊

我不想逆天啊

我林凡成为富家子弟,必须得享受。修炼?不现实的事情。最多加加点。阅读此书可能带来不适,此书已经注满正能量。全订验证群532355835逆天书普通群534442331...

重生九二之商业大亨

重生九二之商业大亨

新码的西南崛起已经上传,欢迎各位亲移驾亲临。这是一个令人发指的故事,这是一个令人发指的人。不说他其它的成就,大学刚毕业,他在纳斯达克,就已经有了两家上市公司,不对,他最近又收购了一家上市公司,哦,还在计划收购另一家。身后,还有一大堆投行追赶着,你的这家网站,什么时候上市?广大投资者也说,这样的网站,一定要接受公...

天才狂少

天才狂少

一个本来庸才的学生,在一次奇遇后,居然成为傲世天才,他发现自己的身世居然是而后面还有天大的阴谋...

体坛之篮球教父

体坛之篮球教父

穿越2006,喜获神级教练系统。帮助姚麦夺冠,圆无数中国球迷心中的冠军梦。当雷霆四少留守俄城,一个崭新的支平民球队,又如何把不可一世的勇士王朝掀翻下马。一次穿越,一段关于有完本作品重生之安东尼篮神体坛之召唤猛将,人品有保证,放心收藏阅读。阅群539855046,进群需晒学徒以上粉丝值。...

上门狂婿

上门狂婿

被丈母娘为难,被女神老婆嫌弃!都说我是一无是处的上门女婿!突然,家族电话通知我继承亿万家财,其实我是一个级富二代...

天命修罗

天命修罗

人无耻则无畏,人至贱则无敌!谁说盖世枭雄必需得霸气十足?谁说无耻贱圣踏不得七彩祥云?谁说此般少年不能争天命,演修罗,替天行道?(QQ书友群313310371)...

每日热搜小说推荐