故事会网

手机浏览器扫描二维码访问

第六百二十九章 hermitian-einstein度量(第1页)

另一个与卡拉比猜想密切相关的问题是代数几何中全纯向量丛的稳定性与其上的Hermitian-Einstein度量的对应问题,这个问题约化成一个与规范场理论相关的极为困难的非线性方程解的存在性问题。

1986年丘成桐与乌伦贝克(Uhlenbeck)合作,在卡勒流形上完全解决了这个问题。

稍后,唐纳森也在投影流形上用不同的方法将这个问题解决。

1988年,辛普森(Simpson)将这些结果推广并与霍奇变分理论相结合,发展成为代数几何中一个极为有效的工具。

凯勒流形的内在对称性

我们花了点时间来讨论度规,是为了要对凯勒度规和具备这种度规的凯勒流形能够稍微有点概念。一个度规是否为凯勒,和在空间上移动时,度规如何变化有关。

凯勒流形是一组叫作“厄米特流形”(Hermitianmanifold)的复流形的子类。

在厄米特流形上,你可以把复数坐标的原点放在任何一点上,它在该点上的度规看起来像是标准的欧氏几何度规。

但当你离开该点时,它的度规就愈来愈不像欧氏的。

更明确地说,当移动到与原点的距离为ε时,度规系数本身的改变差异大致是ε倍。我们将这样的流形称为“一阶欧氏空间”。

所以如果ε是0.001英寸(1英寸=2.54厘米),当我们离开ε距离时,厄米特度规的系数与原先的差距会维持在约0.001英寸的误差内。至于凯勒流形则是“二阶欧氏空间”,这表示它的度规会更加稳定。当与原点的距离为ε时,凯勒流形的度规系数的改变大致是ε2倍。

沿用前面的例子,当ε=0.001英寸时,度规的变化误差只有0.000001英寸。

为何卡拉比要特别重视凯勒流形呢?要回答这个问题,我们得先考虑可能的选择范围。

比方说,如果真的想要严格限制,你可以坚持流形必须是完全平坦的。

但只要是二维以上的任何维度,唯一完全平坦的紧致流形就只有环面或它的近亲。

就流形而言,环面其实相当简单,因而也相当受限。我们希望能够更多样,看到更多可能性。至于厄米特流形,则又嫌限制太少,它的可能性太多太多了。于是介于厄米特和平坦之间的凯勒流形,正具有几何学家经常寻找的那种特质:它们具有足够多的结构,因此不会难以操作,但是结构又不会多到限制过多,以至于根本找不到符合你的明确条件的流形。

喜欢数学心请大家收藏:()数学心

穿到八零,我自带锦鲤系统!  新人驾到  玄灵界都知道我柔弱可怜但能打  混迹娱乐圈的日子  国运:拥有多重身份的我很合理吧  大明:开局气疯朱元璋,死不登基  重生在宝可梦,我的后台超硬  我一枪一剑杀穿大陆  摊牌了,我爹是绝顶高手!  哦豁!虐文炮灰不干了!  至尊战皇  暗无  穿成商户女摆烂,竟然还要逃难!  农夫是概念神?三叶草了解一下!  我的徒弟不对劲  永恒大陆之命运  快穿之炮灰得偿所愿  译文欣赏:博伽瓦谭  在下潘凤,字无双  宗门全是美强惨,小师妹是真疯批  

热门小说推荐
我不想逆天啊

我不想逆天啊

我林凡成为富家子弟,必须得享受。修炼?不现实的事情。最多加加点。阅读此书可能带来不适,此书已经注满正能量。全订验证群532355835逆天书普通群534442331...

重生九二之商业大亨

重生九二之商业大亨

新码的西南崛起已经上传,欢迎各位亲移驾亲临。这是一个令人发指的故事,这是一个令人发指的人。不说他其它的成就,大学刚毕业,他在纳斯达克,就已经有了两家上市公司,不对,他最近又收购了一家上市公司,哦,还在计划收购另一家。身后,还有一大堆投行追赶着,你的这家网站,什么时候上市?广大投资者也说,这样的网站,一定要接受公...

天才狂少

天才狂少

一个本来庸才的学生,在一次奇遇后,居然成为傲世天才,他发现自己的身世居然是而后面还有天大的阴谋...

体坛之篮球教父

体坛之篮球教父

穿越2006,喜获神级教练系统。帮助姚麦夺冠,圆无数中国球迷心中的冠军梦。当雷霆四少留守俄城,一个崭新的支平民球队,又如何把不可一世的勇士王朝掀翻下马。一次穿越,一段关于有完本作品重生之安东尼篮神体坛之召唤猛将,人品有保证,放心收藏阅读。阅群539855046,进群需晒学徒以上粉丝值。...

上门狂婿

上门狂婿

被丈母娘为难,被女神老婆嫌弃!都说我是一无是处的上门女婿!突然,家族电话通知我继承亿万家财,其实我是一个级富二代...

天命修罗

天命修罗

人无耻则无畏,人至贱则无敌!谁说盖世枭雄必需得霸气十足?谁说无耻贱圣踏不得七彩祥云?谁说此般少年不能争天命,演修罗,替天行道?(QQ书友群313310371)...

每日热搜小说推荐