故事会网

手机浏览器扫描二维码访问

第一百三十一章 泰勒公式微积分(第1页)

18世纪早期英国牛顿学派最优秀代表人物之一的英国数学家泰勒(BrookTaylor),于1685年8月18日在英格兰德尔塞克斯郡的埃德蒙顿市出生。

1701年,泰勒进剑桥大学的圣约翰学院学习。

1709年后移居伦敦,获得法学学士学位。

1712年当选为英国皇家学会会员,同年进入促裁牛顿和莱布尼兹发明微积分优先权争论的委员会。并于两年后获法学博士学位。

从1714年起担任皇家学会第一秘书,1718年以健康为由辞去这一职务。

1717年,他以泰勒定理求解了数值方程。

泰勒以微积分学中将函数展开成无穷级数的定理着称于世。

泰勒在无聊的玩GeoGebra,里面有个公式:

Y=A0+A1x+A2x^2+A3x^3+A4x^4+A5x^5+A6x^6+A7x^7+A8x^8+A9x^9

然后无聊的拨弄着滑动条来随意改变这些个A值。屏幕上函数图像不断变化着,但那线条总是歪七八扭,不听使唤。他认真了起来,扩大了A值的范围和精度,逐渐找到规律之后,他已经能够调出剑尖,牙齿,猫耳等图像。

他不断增加项数,调整参数,他发现增加的项数越多,他就越能掌控图像的变化。

他像扭铁丝似的上下弯折着曲线,无意中调出了一段波浪形的图像,看着似乎挺眼熟……

——这不是sin函数吗!

他抑制不住自己的兴奋,赶紧输入了标准的sin函数进行对比,同时继续调整多项式,使这个山寨函数尽可能地贴近正品。

他仔细端详着,单看眼前这一段,简直可以以假乱真,不过越到后面,分歧也就越明显了。

他猛然意识到:“我能够控制多项式画出任意图像!甚至把它伪装成其他函数!“

但是他很快冷静了下来,问了自己一连串的问题:所谓的任意,可以是无限制的任意吗?我能否完美地“伪装“出一个目标函数?如果不能,那又能够伪装到何种程度?摆在眼前的具体问题就是,能否“伪装“出一个完美的sin函数?

他决定一探究竟。如果存在某n次多项式等于sin(x);则其导函数也等于sin(x)的导函数;它的二阶导也等于sin(x)的二阶导;它的三阶导也等于sin(x)的三阶导;

……它的n阶导也等于sin(x)的n阶导。

可是,每求导一次,多项式就会降一阶。

求到n阶导不就变成常数了吗?

摊牌了,我爹是绝顶高手!  新人驾到  在下潘凤,字无双  穿成商户女摆烂,竟然还要逃难!  重生在宝可梦,我的后台超硬  译文欣赏:博伽瓦谭  穿到八零,我自带锦鲤系统!  至尊战皇  暗无  国运:拥有多重身份的我很合理吧  宗门全是美强惨,小师妹是真疯批  玄灵界都知道我柔弱可怜但能打  混迹娱乐圈的日子  我的徒弟不对劲  永恒大陆之命运  农夫是概念神?三叶草了解一下!  哦豁!虐文炮灰不干了!  快穿之炮灰得偿所愿  大明:开局气疯朱元璋,死不登基  我一枪一剑杀穿大陆  

热门小说推荐
我不想逆天啊

我不想逆天啊

我林凡成为富家子弟,必须得享受。修炼?不现实的事情。最多加加点。阅读此书可能带来不适,此书已经注满正能量。全订验证群532355835逆天书普通群534442331...

重生九二之商业大亨

重生九二之商业大亨

新码的西南崛起已经上传,欢迎各位亲移驾亲临。这是一个令人发指的故事,这是一个令人发指的人。不说他其它的成就,大学刚毕业,他在纳斯达克,就已经有了两家上市公司,不对,他最近又收购了一家上市公司,哦,还在计划收购另一家。身后,还有一大堆投行追赶着,你的这家网站,什么时候上市?广大投资者也说,这样的网站,一定要接受公...

天才狂少

天才狂少

一个本来庸才的学生,在一次奇遇后,居然成为傲世天才,他发现自己的身世居然是而后面还有天大的阴谋...

体坛之篮球教父

体坛之篮球教父

穿越2006,喜获神级教练系统。帮助姚麦夺冠,圆无数中国球迷心中的冠军梦。当雷霆四少留守俄城,一个崭新的支平民球队,又如何把不可一世的勇士王朝掀翻下马。一次穿越,一段关于有完本作品重生之安东尼篮神体坛之召唤猛将,人品有保证,放心收藏阅读。阅群539855046,进群需晒学徒以上粉丝值。...

上门狂婿

上门狂婿

被丈母娘为难,被女神老婆嫌弃!都说我是一无是处的上门女婿!突然,家族电话通知我继承亿万家财,其实我是一个级富二代...

天命修罗

天命修罗

人无耻则无畏,人至贱则无敌!谁说盖世枭雄必需得霸气十足?谁说无耻贱圣踏不得七彩祥云?谁说此般少年不能争天命,演修罗,替天行道?(QQ书友群313310371)...

每日热搜小说推荐