手机浏览器扫描二维码访问
这里柯尼斯堡,是普鲁士兴起之地,也是俄罗斯喜欢争夺的地方,后来是俄罗斯加里宁格勒。
康德也来过这个地方,歌德巴赫也在这里提出猜想。
殴拉也来到这里,在柯尼斯堡的七个桥这里经常闲逛,这样可以行走思考问题,想想自己以后该干什么。
擅长把任何生活问题的殴拉,总觉得这七个桥有些怪怪的。
时间一久,他才发现,着七个桥不能不走回头路的全部走完。
对殴拉来说,他只喜欢一个地方逛一次,如果重复就会失去兴趣。
殴拉看着着七个桥,心想:“如何走这个桥,才能不重复的全部走完?”
对殴拉来说,没有无法解决的数学问题,只要设置一个模型就可以了。
殴拉把七个桥按照对应位置画出了一个图,把可以行走的路线连接起来。
连接之后,殴拉试图开始寻找一条路走法,但是画了半天,却还没有画出来。
“难不成,不能一下子全部走完这七座桥?”
殴拉发出疑问:“可是,这又是为什么?就算不能一步走完,也会有原因的吧?”
后来欧拉把它转化成一个几何问题——一笔画问题。
1736年29岁的欧拉向圣彼得堡科学院递交了《哥尼斯堡的七座桥》的论文,在解答问题的同时,开创了数学的一个新的分支——图论与几何拓扑,也由此展开了数学史上的新历程。
他不仅解决了此问题,且给出了连通图可以一笔画的充要条件是:奇点的数目不是0个就是2个(连到一点的数目如是奇数条,就称为奇点,如果是偶数条就称为偶点,要想一笔画成,必须中间点均是偶点,也就是有来路必有另一条去路,奇点只可能在两端,因此任何图能一笔画成,奇点要么没有要么在两端)。
喜欢数学心请大家收藏:()数学心
暗无 国运:拥有多重身份的我很合理吧 永恒大陆之命运 混迹娱乐圈的日子 译文欣赏:博伽瓦谭 摊牌了,我爹是绝顶高手! 我的徒弟不对劲 玄灵界都知道我柔弱可怜但能打 穿到八零,我自带锦鲤系统! 快穿之炮灰得偿所愿 至尊战皇 新人驾到 宗门全是美强惨,小师妹是真疯批 穿成商户女摆烂,竟然还要逃难! 哦豁!虐文炮灰不干了! 我一枪一剑杀穿大陆 在下潘凤,字无双 重生在宝可梦,我的后台超硬 大明:开局气疯朱元璋,死不登基 农夫是概念神?三叶草了解一下!
我林凡成为富家子弟,必须得享受。修炼?不现实的事情。最多加加点。阅读此书可能带来不适,此书已经注满正能量。全订验证群532355835逆天书普通群534442331...
新码的西南崛起已经上传,欢迎各位亲移驾亲临。这是一个令人发指的故事,这是一个令人发指的人。不说他其它的成就,大学刚毕业,他在纳斯达克,就已经有了两家上市公司,不对,他最近又收购了一家上市公司,哦,还在计划收购另一家。身后,还有一大堆投行追赶着,你的这家网站,什么时候上市?广大投资者也说,这样的网站,一定要接受公...
一个本来庸才的学生,在一次奇遇后,居然成为傲世天才,他发现自己的身世居然是而后面还有天大的阴谋...
穿越2006,喜获神级教练系统。帮助姚麦夺冠,圆无数中国球迷心中的冠军梦。当雷霆四少留守俄城,一个崭新的支平民球队,又如何把不可一世的勇士王朝掀翻下马。一次穿越,一段关于有完本作品重生之安东尼篮神体坛之召唤猛将,人品有保证,放心收藏阅读。阅群539855046,进群需晒学徒以上粉丝值。...
被丈母娘为难,被女神老婆嫌弃!都说我是一无是处的上门女婿!突然,家族电话通知我继承亿万家财,其实我是一个级富二代...
人无耻则无畏,人至贱则无敌!谁说盖世枭雄必需得霸气十足?谁说无耻贱圣踏不得七彩祥云?谁说此般少年不能争天命,演修罗,替天行道?(QQ书友群313310371)...