手机浏览器扫描二维码访问
高木贞治说:“不完全对,即使世界上任何一个东西都是由一个简单的元交换出来的,但是这个交换过程极其繁琐,是一大堆的逻辑符号,就算用范畴论的语言都需要写好几页呢。”
小平邦彦无语:“那还不如非交换呢,把非交换弄简单点,不也可以操作嘛!”
阿贝尔感觉到,关于数论中同余的问题,往往就会关联有限群。
这是不可避免的。
只要以规范,就会让其得到大面积惊人的使用。
比如二律互反等一类的数论问题,在有限域这种地方也能用得着。
那么近下来,让大家接受有限数域,就是最终于的问题了。
对于此,阿贝尔扩张就是关于这个问题的研究的,同时后人有循环扩张、分圆扩张及库默尔扩张。
对于分圆扩张,克罗内克发展了克罗内克的青春梦。
而高木贞治,解决了克罗内克青春梦猜想。
类域论就是研究怎样用k的元素来描述k的所有阿贝尔扩张的问题。
1920年日本数学家高木贞治完成了类域论的最早突破:对于每个扩张K,都对应k中的一个对象T(K),即k的理想类群在某一等价关系之下的一个等价类。
高木描述了这些T(K)的集合,而且每一个T(K)都刻划k的唯一的阿贝尔扩张K,并且K的代数及算术性质可由T(K)直接推出。
对这个漂亮的定理,高木给出的证明非常繁复,中间还要用到解析的方法,但其中起主要作用的是定义狄利克雷L级数。
之前几百年,高斯发现了二次互反律的多种证明。
1920年,高木贞治发展了关于数域的阿贝尔扩张理论,和类域论。
后来阿廷发现了阿廷互反律。
从中发现了在数论、群论和代数几何之间的相互联系。
同余代数,对于椭圆曲线与模形式。
而模形式对应艾森斯坦级数。
所以二律互反对于级数,一般级数使用狄利克雷的L级数来表示的。
阿廷就发现了这个东西,后来推广到阿廷互反律。
喜欢数学心请大家收藏:()数学心
穿成商户女摆烂,竟然还要逃难! 农夫是概念神?三叶草了解一下! 国运:拥有多重身份的我很合理吧 暗无 我的徒弟不对劲 重生在宝可梦,我的后台超硬 摊牌了,我爹是绝顶高手! 我一枪一剑杀穿大陆 快穿之炮灰得偿所愿 永恒大陆之命运 宗门全是美强惨,小师妹是真疯批 穿到八零,我自带锦鲤系统! 玄灵界都知道我柔弱可怜但能打 大明:开局气疯朱元璋,死不登基 混迹娱乐圈的日子 新人驾到 哦豁!虐文炮灰不干了! 在下潘凤,字无双 至尊战皇 译文欣赏:博伽瓦谭
市一高新丁黄景耀因得罪骨干教师被恶意针对,不堪受辱辞职后意外得到仙家至宝。重新执教县一高,左手录运簿册掌天下文章,可查看每一个学生学习天赋,提升天赋。右手文昌大印掌考场气运,财富官运。教师以教育水平和升学率为本,黄景耀渐渐发现他的本钱雄厚的有些令人发指,一次次撼动整个教育界,又远不止单一的教育界。...
非凡人生凌轩是这个都市的主角,他身上发生的一切,应该是男人们都渴望得到的。他的经历,就是一个个娇艳美女组合而成的酸甜苦辣爱恨情仇非凡人生绝非一般的人生故事,娇艳人生,不走寻常路。非凡人生延续面包作品的一贯风格,更清新,更自然,更现代!总结只有一句YY,只有YY,男人的YY,最尽情的YY!...
炮灰是什么?雪兰告诉你,炮灰是用来打别人脸的。凭什么炮灰就要为男女主的感情添砖加瓦,凭什么炮灰就要任人践踏?凭什么炮灰就要为男女主献上膝盖?凭什么炮灰就要成为垫脚石?炮灰不哭,站起来撸!本文男女主身心干净,秉持着宠宠宠的打脸原则,男主始终是一个人哦!...
作为醉月楼唯一一个男人,杨辰觉得压力很大。通过我洗的衣服来判断,李姐姐胖了两斤,王姐姐瘦了点,还有,能不能别让马姐姐穿那么性感的衣服,我洗衣服压力很大的。杨辰需要每天像老鸨这样汇报着工作。除此之外,他还要严守自己的贞操。杨辰,今天晚上来侍寝!让姐姐亲一个!记住,别躲,今晚,你是我的。...
穿越2006,喜获神级教练系统。帮助姚麦夺冠,圆无数中国球迷心中的冠军梦。当雷霆四少留守俄城,一个崭新的支平民球队,又如何把不可一世的勇士王朝掀翻下马。一次穿越,一段关于有完本作品重生之安东尼篮神体坛之召唤猛将,人品有保证,放心收藏阅读。阅群539855046,进群需晒学徒以上粉丝值。...
这里有西楚霸王‘项羽’。这里有绝代杀神‘白起’。这里有千古奇人‘鬼谷子’。这里有西府赵王‘李元霸’。这里有盖世猛将‘吕布’。这是一个开挂的故事,生死看淡,不服就干!人呢?快进来扶扶朕(疯狂暗示加入书架),朕要拿传国玉玺,给读者老爷们砸核桃!什么?不吃核桃?没关系,拿朕的金箍棒来。给读者老爷们先剔剔牙,再随朕前往...