手机浏览器扫描二维码访问
,,,!
t{w(x0)}k(zsnp)t
le(sx)(zt)=[(1c(sp)-1{nxi-1}]-1=n(1-x(p)p-s)-1。
这是一个由正则化组合系数和解析延拓组成的复合方程组,解起来非常的麻烦。
当时徐云做出的唯一判断,便是最后一道方程的解一定是个比值。
不过今天有了足够的时间,他便又发现了一个情况。
只见他在方程的第三行和第五行边画了两根线,又打了个问号。
表情若有所思:
“似乎”
谷邼
“这张纸片的复合方程组,可以分成三个部分计算?”
众所周知。
正则化理论,最早是为解决不适定问题而提出的。
长期以来人们认为,从实际问题归结出的数学问题总是适定的。
早在20世纪初。
hadaard便观察到了一个现象:
在一些很一般的情况下,求解线性方程的问题是不适定的。
即使方程存在唯一解,如果方程的右边发生一个任意小的扰动,都会导致方程的解有一个很大的变化。
在这种情况下。
如果最小化方程两边之差的一个范函,并不能获得方程的一个近似解。
到了20世纪60年代。
tikhonov,ivanov和phillips又发现了最小化误差范函的加正则项。
即正则化的范函,而不是仅仅最小化误差范函,就能得到一个不适定的解题的解序列趋向于正确解。
换而言之。
第一部分的方程组,其实是一个描述渐变区域的序列集合。
甚至可能是
图像?
想到这里。
徐云顿时来了兴趣。
从4db2可以判断,这应该是一个涉及到旋转曲面的问题。
第二行的(jik=s)n(jik=q)(xi)(wj)则可以确定曲面与经线成了某个定角。
既然是定角,那么就可以假设定模型λ=(a,b,π),以及观测序列o=(o1,o2,,ot)。
那么就有a1(i)=πibi(o1),i=1,2,,n
at+1(i)=[j=1nat(i)aji]bi(ot+1),i=1,2,,n
十五分钟后。
看着面前的结果,徐云若有所思:
“极大化的模型参数吗”
随后他思索片刻,继续在纸上写下了一道公式:
q(λ,λ)=ilogπi1p(o,iiλ)+i(t=1t?1logaitit+1)p(o,iiλ)+i(t=1tlogbit(ot))p(o,iiλ)。
这是一个很简单的投影曲线,并且圆锥对数螺线上任一点的挠率也与该点到轴的距离成反比。
玉阶春庭雪(重生 h) 娇娘(古言 ) 与竹马交往之后(日系 ) 我无敌?全修仙界就我不知道! 知我意( 年下 H) 叩问仙道 周敏周可余沉 赵微兰叶铭桀 一夜惊喜,禁爱总裁宠上天 江炎白霜雪 盖世龙君 神秘之劫 败给莉莉娅(西幻) 夏天到了(,亲姐弟骨) 盖世圣医 幼齿热恋(青梅竹马) 主角叶思凡 继妻 行止骛暴(现言 ) 娇纵宠玉
他是学生是老师是医生更是深藏不露的贴身保镖。QQ群583880154...
肉身不破,灵魂不灭,为了回到穿越前,为了再见到他可爱的女儿,不断引起星域乱战,一个不死强者,重启纪元,回归平凡,从此一个无敌奶爸诞生了。续集,正在新书连载着...
一个落魄的大学生阴差阳错地灵魂穿越到了古代,稀里糊涂地做了皇子,又发动政变赶走太子当上了皇帝,从此便过上了锦衣玉食声色犬马的生活。但他却不满足,他要做一个全能型的功夫皇帝因此,他拜武林宗师学习武功,又向江湖术士讨取御女秘方,美艳绝伦的妃子欲望强烈的宫女温婉恬静的皇后妖艳迷人的异族美女野性十足的江湖侠女,各种类型的美女纷纷被他男人的功夫征服金钱权利和美女一个都不能少!想爽的,还等什么呢?本书保证精彩,敬请放心收藏,推荐!...
新书宇宙乾坤塔已经发布,可以开宰了第一次工业革命,蒸汽机将大英帝国变成了日不落帝国第二次工业革命,内燃机推动历史的车轮,电灯照亮漆黑的夜晚第三次工业革命,互联网将我们的星球变成了地球村大学生秦毅走运获得了科技塔,掀开了星际工业时代,从此以后太阳系变成了我们的后花园我们在太空之中发展农业兴建太空工厂我们在月...
全本免费,新书斗罗无敌从俘获女神开始斗罗之收徒就变强斗罗之酒剑斗罗王圣穿越到了斗罗1的世界之中,在觉醒武魂的那一天,竟然是先天二十级的魂力。看王圣如何组建属于他自己的7怪。当他的7怪与唐三的7怪相遇时,又会是怎样的一个场面?谁强?谁弱?谁才是真正的主角!粉丝群1304623681...
吕诚,十五岁之前一直没能修炼出内劲,只能当杂役。但他从小喜欢夜视星空,十年时间,让他的眉心处出现别人所没有的感应力,能让他感知周围的一切事务,并且修炼出内劲,踏入武者行列。从此,这个普通的杂役进阶为天才武者。学心法,进展神速练武技,无师能自通易容变声,惟妙惟肖。在这个武者为尊的世界,最终一步步成为睥睨天下的至尊...